Selecting optimal minimum spanning trees that share a topological correspondence with phylogenetic trees

نویسندگان

  • Prabhav Kalaghatgi
  • Thomas Lengauer
چکیده

Choi et al. (2011) introduced a minimum spanning tree (MST)-based method called CLGrouping, for constructing tree-structured probabilistic graphical models, a statistical framework that is commonly used for inferring phylogenetic trees. While CLGrouping works correctly if there is a unique MST, we observe an indeterminacy in the method in the case that there are multiple MSTs. In this work we remove this indeterminacy by introducing so-called vertex-ranked MSTs. We note that the effectiveness of CLGrouping is inversely related to the number of leaves in the MST. This motivates the problem of finding a vertex-ranked MST with the minimum number of leaves (MLVRMST). We provide a polynomial time algorithm for the MLVRMST problem, and prove its correctness for graphs whose edges are weighted with tree-additive distances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing phylogenetic trees using topologically related minimum spanning trees

Choi et al. [2] introduced a minimum spanning tree (MST)-based method called CLGrouping, for constructing tree-structured probabilistic graphical models, a statistical framework that is commonly used for inferring phylogenetic trees. While CLGrouping works correctly if there is a unique MST, we observe an indeterminacy in the method in the case that there are multiple MSTs. We demonstrate the i...

متن کامل

Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability

In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

A Minimum Spanning Tree Framework for Inferring Phylogenies

A Minimum Spanning Tree Framework for Inferring Phylogenies by Daniel Giannico Adkins Doctor of Philosophy in Computer Science University of California, Berkeley Professor Satish B. Rao, Chair This dissertation discusses how to write efficient, deterministic programs to infer phylogenetic trees. These programs are based on a theoretically optimal polynomial time algorithm. The programs are prac...

متن کامل

Spanning edge betweenness

We present a new edge betweenness metric for undirected and weighted graphs. This metric is defined as the fraction of minimum spanning trees where a given edge is present and it was motivated by the necessity of evaluating phylogenetic trees. Moreover we provide results and methods concerning the exact computation of this metric based on the well known Kirchhoff’s matrix tree theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.02844  شماره 

صفحات  -

تاریخ انتشار 2017